For activation T cells engage antigen-presenting cells (APCs) in lymphatic tissues. The contact duration and kinetics (static versus dynamic) vary considerably in different model systems; however, it is unclear whether T cells, APCs, or the environment are responsible for the observed discrepancies. Using 3-D collagen matrices as structural scaffold, we directly compared the kinetics of T-cell engagement and activation by functionally major APC types, ie, dendritic cells (DCs) and resting or activated B cells. Resting B cells engaged T cells in long-lived (several hours), adhesive, and leukocyte function-associated antigen-1 (LFA-1)-dependent conjugates in 3-D collagen as well as in intact lymph nodes in vivo. DCs and preactivated B cells, however, supported predominantly dynamic, short-lived (minutes), and sequential contacts to T cells that were dependent on high cytoskeletal activity of the APCs but could not be inhibited by anti-LFA-1 treatment. Naive T cells were most strongly activated by DCs and activated B cells, whereas resting B cells were 100-fold less efficient to induce T-cell proliferation. Thus, in the same 3-D environment, naive T cells respond with a spectrum of different interaction modes dependent on the type and activation state of the APCs. Thereby, more dynamic interaction kinetics is positively correlated with higher T-cell priming efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-03-1193DOI Listing

Publication Analysis

Top Keywords

cells
15
3-d collagen
12
interaction modes
8
antigen-presenting cells
8
cells apcs
8
activated cells
8
cells resting
8
resting cells
8
naive cells
8
spectrum biophysical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!