Motivation: In order to design effective HIV inhibitors, studying and understanding the mechanism of HIV protease cleavage specification is critical. Various methods have been developed to explore the specificity of HIV protease cleavage activity. However, success in both extracting discriminant rules and maintaining high prediction accuracy is still challenging. The earlier study had employed genetic programming with a min-max scoring function to extract discriminant rules with success. However, the decision will finally be degenerated to one residue making further improvement of the prediction accuracy difficult. The challenge of revising the min-max scoring function so as to improve the prediction accuracy motivated this study.

Results: This paper has designed a new scoring function called a sum-product function for extracting HIV protease cleavage discriminant rules using genetic programming methods. The experiments show that the new scoring function is superior to the min-max scoring function.

Availability: The software package can be obtained by request to Dr Zheng Rong Yang.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bth414DOI Listing

Publication Analysis

Top Keywords

hiv protease
16
protease cleavage
16
scoring function
16
genetic programming
12
discriminant rules
12
prediction accuracy
12
min-max scoring
12
sum-product function
8
function
6
scoring
5

Similar Publications

Genetic Diversity and Antiretroviral Resistance in HIV-1-Infected Patients Newly Diagnosed in Cabo Verde.

Viruses

December 2024

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.

The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.

View Article and Find Full Text PDF

Mechanism and Kinetics of HIV-1 Protease Activation.

Viruses

November 2024

Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.

The HIV-1 protease is a critical enzyme for viral replication. Because protease activity is necessary to generate mature infectious virions, it is a primary target of antiretroviral treatment. Here, we provide an overview of the mechanisms regulating protease activation and the methods available to assess protease activity.

View Article and Find Full Text PDF

This systematic review assessed the prevalence of transmitted and acquired HIV drug resistance (HIVDR) and the associated risk factors in Mozambique. A search of the PubMed, Cochrane, B-On, and Scopus databases up to December 2023 was conducted and included 11 studies with 1118 HIV-1 pol sequences. Drug resistance mutations (DRMs) to NNRTIs were found in 13% of the drug-naive individuals and 31% of those on ART, while NRTI resistance occurred in 5% and 10%, respectively.

View Article and Find Full Text PDF

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!