It was observed previously that the deletion of the open reading frame YNL107w (YAF9) was highly pleiotropic in yeast and caused defective growth phenotypes in the presence of several unrelated inhibitors, including caesium chloride. We have selected multicopy extragenic suppressor genes, revealing that this phenotype can be suppressed by overdosing the transcription factors BDF1 and GAT1 in the yaf9Delta strain. We focused our analysis on suppression by BDF1 and performed a genome-wide transcript analysis on a yaf9Delta strain, compared with the wild-type and BDF1-suppressed strains. YAF9 deletion has a clear effect on transcription and leads to modulation of the level of expression of several genes. Transcription of a considerable portion of the underexpressed genes is restored to wild-type levels in the BDF1-suppressed strain. We show by chromatin immunoprecipitation that both Yaf9p and Bdf1p bind to promoters of some of these genes and that the level of H3 and H4 acetylation at one of these promoters is significantly lowered in the yaf9 deleted strain, compared with the wild-type and the BDF1-suppressed strains.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2004.04184.xDOI Listing

Publication Analysis

Top Keywords

yaf9 deletion
8
yaf9delta strain
8
strain compared
8
compared wild-type
8
wild-type bdf1-suppressed
8
bdf1-suppressed strains
8
bromodomain-containing protein
4
protein bdf1p
4
bdf1p acts
4
acts phenotypic
4

Similar Publications

The C-terminal protein interaction domain of the chromatin reader Yaf9 is critical for pathogenesis of .

mSphere

March 2024

Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia.

Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair.

View Article and Find Full Text PDF

Swc4 protects nucleosome-free rDNA, tDNA and telomere loci to inhibit genome instability.

DNA Repair (Amst)

July 2023

School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

In the baker's yeast Saccharomyces cerevisiae, NuA4 and SWR1-C, two multisubunit complexes, are involved in histone acetylation and chromatin remodeling, respectively. Eaf1 is the assembly platform subunit of NuA4, Swr1 is the assembly platform and catalytic subunit of SWR1-C, while Swc4, Yaf9, Arp4 and Act1 form a functional module, and is present in both NuA4 and SWR1 complexes. ACT1 and ARP4 are essential for cell survival.

View Article and Find Full Text PDF

Background: The YEATS domain is a highly conserved protein structure that interacts with acetylated and crotonylated lysine residues in N-terminal tails of histones. The budding yeast genome encodes three YEATS domain proteins (Taf14, Yaf9, and Sas5) that are all the subunits of different complexes involved in histone acetylation, gene transcription, and chromatin remodeling. As the strains deficient in all these three genes are inviable, it has been proposed that the YEATS domain is essential in yeast.

View Article and Find Full Text PDF

Yaf9 is an integral part of the NuA4 acetyltransferase and the SWR1 chromatin remodeling complexes. Here, we show that Yaf9 associates with acetylated histone H3 with high preference for H3K27ac. The crystal structure of the Yaf9 YEATS domain bound to the H3K27ac peptide reveals that the sequence C-terminal to K27ac stabilizes the complex.

View Article and Find Full Text PDF

Agrobacterium tumefaciens is a plant pathogen that genetically transforms plant cells by transferring a part of its Ti-plasmid, the T-strand, to the host cell. Under laboratory conditions, it can also transform cells from many different nonplant organisms, including the yeast Saccharomyces cerevisiae. Collections of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!