Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140111 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
January 2025
Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective: To evaluate the efficacy of a microfluidic culture system supplemented with follicular fluid meiosis-activating sterol (FF-MAS) on the maturation of immature oocytes in patients with polycystic ovarian syndrome (PCOS).
Methods: A total of 438 germinal vesicle oocytes from 163 PCOS patients were included. Oocytes were divided into five groups: (1) cultured in static drops without FF-MAS, (2) cultured in static drops with FF-MAS, (3) cultured in a microfluidic device without FF-MAS, (4) cultured in a microfluidic device with FF-MAS for the first 2 h, and (5) cultured in a microfluidic device with FF-MAS for 24 h.
Adv Mater
January 2025
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Mechanical force attracts booming attention with the potential to tune the tumor cell behavior, especially in cell migration. However, the current approach for introducing mechanical input is difficult to apply in vivo. How the mechanical force affects cell behavior in situ also remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, The University of Manchester, Manchester, UK.
This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
To investigate the incidence rate, risk factors, and clinical implications of postoperative pulmonary complications (PPCs) in patients undergoing colorectal cancer surgery (CRC). The study extracted data from the National Inpatient Sample (NIS) between 2010 and 2019. Patients' data were analyzed to identify predictors of PPCs, and the association between possible factors and PPCs were also assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!