The chlorine leaving group kinetic isotope effects (KIEs) for the S(N)2 reactions between methyl chloride and a wide range of anionic, neutral, and radical anion nucleophiles were calculated in the gas phase and, in several cases, using a continuum solvent model. In contrast to the expected linear dependence of the chlorine KIEs on the C(alpha)-Cl bond order in the transition state, the KIEs fell in a very small range (1.0056-1.0091), even though the C(alpha)-Cl transition state bond orders varied widely from approximately 0.32 to 0.78, a range from reactant-like to very product-like. This renders chlorine KIEs, and possibly other leaving-group KIEs, less useful for studies of reaction mechanisms than commonly assumed. A partial explanation for this unexpected relationship between the C(alpha)-Cl transition state bond order and the magnitude of the chlorine KIE is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo049327zDOI Listing

Publication Analysis

Top Keywords

transition state
12
chlorine leaving
8
leaving group
8
group kinetic
8
kinetic isotope
8
isotope effects
8
chlorine kies
8
bond order
8
calpha-cl transition
8
state bond
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!