RNAi: running interference for the cell.

Org Biomol Chem

Department of Biochemistry, University of Alberta, Edmonton, Alberta, CanadaT6G 2H7.

Published: July 2004

RNA interference or RNAi is a recently characterized mechanism of eukaryotic gene regulation in which a short sequence of double-stranded RNA (dsRNA) specifically down-regulates expression of the associated gene. Preliminary characterization of this phenomenon has revealed a set of inter-related cellular pathways which appear to represent both a response to foreign RNA and a mechanism of endogenous gene regulation. Introduction of dsRNA into cells by a variety of means, including transfection of synthetic RNA duplexes, triggers the RNAi response resulting in specific suppression of target gene expression. Recent efforts on a genome wide scale have involved application of RNAi as an important new tool in cell biology to elucidate gene function in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b404932mDOI Listing

Publication Analysis

Top Keywords

gene regulation
8
gene
5
rnai
4
rnai running
4
running interference
4
interference cell
4
rna
4
cell rna
4
rna interference
4
interference rnai
4

Similar Publications

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!