Experimental simulation of A-bomb gamma ray spectra: revisited.

Radiat Prot Dosimetry

School of Physics and Electronic Systems Engineering, University of South Australia, Mawson Lakes, 5095, Australia.

Published: September 2004

It has been reported recently that the A-bomb gamma ray spectra received by the colon of the average Japanese survivor of Hiroshima and Nagasaki may be experimentally simulated using a hospital-based Philips SL15 linear accelerator. The simulated A-bomb gamma radiation may be used in radiobiology experiments to determine, amongst other things, the biological effectiveness of the A-bomb gamma radiation. However, in that study, the electron beams from the linear accelerator were poorly defined and photon contamination was ignored. In the study reported here, a Varian Clinac 2100C linear accelerator has been used for the same purpose but with photon contamination included in better defined output electron beams. It is found that the A-bomb gamma radiation can still be matched to an acceptable degree (<10%). The cause of the slightly poorer fit was due mainly to the different ranges of energies available from the linear accelerators used. The absorbed dose received by model breasts was also estimated in this study for the same situations as in the previous study. The ratio of the breast to colon doses was found to be only (3.9 +/- 4.0)% low compared with the expected values of 1.17 and 1.16 for Hiroshima and Nagasaki, respectively. These results provide further confirmation of the acceptability of the simple cylindrically symmetrical body models employed in these studies to represent the average Japanese survivor.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/nch320DOI Listing

Publication Analysis

Top Keywords

a-bomb gamma
20
linear accelerator
12
gamma radiation
12
gamma ray
8
ray spectra
8
electron beams
8
photon contamination
8
a-bomb
5
gamma
5
experimental simulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!