Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study, participants distinguished between familiar and novel configurations of pairs of items which had been studied together by either learning the location or the identity of the items. In the second study, participants studied words by either rating the words' pleasantness or counting syllables. The ventral tegmental area and medial substantia nigra showed increased activation by associative novelty (first study) and subsequent free recall performance (second study). In both studies, this activation accompanied hippocampal activation, but was unaffected by the study task. Thus midbrain regions seem to participate selectively in hippocampus-dependent processes of associative novelty and explicit memory formation, but appear to be unaffected by other task-relevant aspects.

Download full-text PDF

Source
http://dx.doi.org/10.1101/lm.75004DOI Listing

Publication Analysis

Top Keywords

associative novelty
12
explicit memory
8
memory formation
8
ventral tegmental
8
tegmental area
8
area medial
8
medial substantia
8
substantia nigra
8
study participants
8
second study
8

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

High-density theta oscillatory-modulated tDCS over the parietal cortex for targeted memory enhancement.

Clin Neurophysiol

December 2024

Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Serbia.

Objectives: Associative memory (AM) declines due to healthy aging as well as in various neurological conditions. Standard transcranial electrical stimulation (tES) protocols show inconclusive facilitatory effects on AM, often lacking function specificity and stimulation focality. We tested the effectiveness of high-density electrode montage delivering anodal theta oscillatory-modulated transcranial direct current stimulation (HD-Theta-otDCS) over the left posterior parietal cortex (PPC), aiming to target AM in a spatially focused and function-specific manner.

View Article and Find Full Text PDF

Zwitterionic covalent organic nanosheets for selective analysis of domoic acid in marine environment.

Anal Chim Acta

December 2024

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China. Electronic address:

Background: Domoic acid (DA) is a neurotoxic compound causing amnesic shellfish poisoning, secreted by red algae and diatoms. As a glutamate analogue, DA accumulates in filter-feeding marine organisms, posing significant health risks to humans upon consumption. Detecting DA in marine environments remains challenging due to its low concentration and interference from complex matrices.

View Article and Find Full Text PDF

The expression of an association between a conditioned stimulus (CS) and an unconditioned stimulus (US) can be attenuated by presenting the CS by itself (i.e., extinction, Ext).

View Article and Find Full Text PDF

Out with the bad, in with the good: A review on augmented extinction learning in humans.

Neurobiol Learn Mem

November 2024

Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX, USA. Electronic address:

Several leading therapies for anxiety-related disorders rely on the principles of extinction learning. However, despite decades of development and research, many of these treatments remain only moderately effective. Developing techniques to improve extinction learning is an important step towards developing improved and mechanistically-informed exposure-based therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!