Little is known about cellular determinants essential for human hepatitis B virus infection. Using the duck hepatitis B virus as a model, we first established a sensitive binding assay for both virions and subviral particles and subsequently elucidated the characteristics of the early viral entry steps. The infection itinerary was found to initiate with the attachment of viral particles to a low number of binding sites on hepatocytes (about 10(4) per cell). Virus internalization was fully accomplished in less than 3 h but was then followed by a period of unprecedented length, about 14 h, until completion of nuclear import of the viral genome. Steps subsequent to virus entry depended on both intact microtubules and their dynamic turnover but not on actin cytoskeleton. Notably, cytoplasmic trafficking of viral particles and emergence of nuclear covalently closed circular DNA requires microtubules during entry only at and for specific time periods. Taken together, these data disclose for the first time a series of steps and their kinetics that are essential for the entry of hepatitis B viruses into hepatocytes and are different from those of any other virus reported so far.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC446123 | PMC |
http://dx.doi.org/10.1128/JVI.78.15.8289-8300.2004 | DOI Listing |
Sci Total Environ
January 2025
Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
World J Gastroenterol
January 2025
Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
In this editorial, we comment on the article by Meng . Chronic hepatitis B (CHB) is a significant global health problem, particularly in developing countries. Hepatitis B virus (HBV) infection is one of the most important risk factors for cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Beijing Institute of Radiation Medicine, Beijing, P.R. China.
From the severe acute respiratory syndrome coronavirus in 2003 to the severe acute respiratory syndrome coronavirus 2 in 2019, coronavirus has seriously threatened human health. Electromagnetic waves not only own high penetration and low pollution but also can physically resonate with the virus. Several studies have demonstrated that electromagnetic waves can inactivate viruses efficiently.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) and hepatitis B virus (HBV) infections pose significant global health concerns, contributing to chronic liver diseases. Blood transfusion is identified as a potential route for the transmission of these viruses, necessitating effective screening strategies for blood donors. The aim of this study was to assess the significance of nucleic acid testing (NAT) in detecting HBV and HCV infections among blood donors who initially tested negative in serological tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!