Cortical malformations are a collection of disorders affecting brain development. Mutations in the LIS1 gene lead to a disorganized and smooth cerebral cortex caused by failure in neuronal migration. Among the clinical consequences of lissencephaly are mental retardation and intractable epilepsy. It remains unclear whether the seizures result from aberrant neuronal placement, disruption of intrinsic properties of neurons, or both. The nematode Caenorhabditis elegans offers an opportunity to study such convulsions in a simple animal with a defined nervous system. Here we show that convulsions mimicking epilepsy can be induced by a mutation in a C. elegans lis-1 allele (pnm-1), in combination with a chemical antagonist of gamma-aminobutyric acid (GABA) neurotransmitter signaling. Identical convulsions were obtained using C. elegans mutants defective in GABA transmission, whereas none of these mutants or the antagonist alone caused convulsions, indicating a threshold was exceeded in response to this combination. Crosses between pnm-1 and fluorescent marker strains designed to exclusively illuminate either the processes of GABAergic neurons or synaptic vesicles surprisingly showed no deviations in neuronal architecture. Instead, presynaptic defects in GABAergic vesicle distribution were clearly evident and could be phenocopied by RNAi directed against cytoplasmic dynein, a known LIS1 interactor. Furthermore, mutations in UNC-104, a neuronal-specific kinesin, and SNB-1, a synaptic vesicle-associated protein termed synaptobrevin, exhibit similar convulsion phenotypes following chemical induction. Taken together, these studies establish C. elegans as a system to investigate subtle cytoskeletal mechanisms regulating intrinsic neuronal activity and suggest that it may be possible to dissociate the epileptic consequences of lissencephaly from the more phenotypically overt cortical defects associated with neuronal migration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh209DOI Listing

Publication Analysis

Top Keywords

neurotransmitter signaling
8
caenorhabditis elegans
8
neuronal migration
8
consequences lissencephaly
8
elegans
5
neuronal
5
epileptic-like convulsions
4
convulsions associated
4
associated lis-1
4
lis-1 cytoskeletal
4

Similar Publications

Unlabelled: Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in , a freshwater planarian flatworm with a primitive nervous system.

View Article and Find Full Text PDF

Genetically encoded calcium (Ca ) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all- optical experimental approaches.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.

View Article and Find Full Text PDF

Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain.

Int J Oral Sci

January 2025

Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!