The ability to measure brain tissue chemistry has led to valuable information regarding pathophysiological changes in patients with traumatic brain injury (TBI). Over the last few years, the focus has been on monitoring changes in brain tissue oxygen to determine thresholds of ischemia that affect outcome. However, the variability of this measurement suggests that it may not be a robust method. We have therefore investigated the relationship of brain tissue pH (pH(b)) and outcome in patients with TBI. We retrospectively analyzed prospectively collected data of 38 patients admitted to the Neurosciences Critical Care Unit with TBI between 1998 and 2003, and who had a multiparameter tissue gas sensor inserted into the brain. All patients were managed using an evidence-based protocol targeting CPP > 70 mm Hg. Physiological variables were averaged over 4 min and analyzed using a generalized least squares random effects model to determine the temporal profile of pH(b) and its association with outcome. Median (IQR) minimum pH(b) was 7.00 (6.89, 7.08), median (IQR) maximum pH(b) was 7.25 (7.18, 7.33), and median (IQR) patient averaged pH(b) was 7.13 (7.07, 7.17). pH(b) was significantly lower in those who did not survive their hospital stay compared to those that survived. In addition, those with unfavorable neurological outcome had lower pH(b) values than those with favorable neurological outcome. pH(b) differentiated between survivors and non-survivors. Measurement of pH(b) may be a useful indicator of outcome in patients with TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1089/0897715041269722DOI Listing

Publication Analysis

Top Keywords

brain tissue
12
median iqr
12
phb
9
traumatic brain
8
brain injury
8
outcome patients
8
patients tbi
8
neurological outcome
8
outcome
7
brain
6

Similar Publications

Conformational Antibodies to Proteolipid Protein-1 and Its Peripheral Isoform DM20 in Patients With CNS Autoimmune Demyelinating Disorders.

Neurol Neuroimmunol Neuroinflamm

March 2025

Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.

Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.

View Article and Find Full Text PDF

This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.

View Article and Find Full Text PDF

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Introduction: The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations.

Research Question: A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!