Ultraviolet surface plasmon-coupled emission using thin aluminum films.

Anal Chem

Department of Biochemistry & Molecular Biology, University of Maryland, 725 West Lombard Street, Baltimore, Maryland 21201, USA.

Published: July 2004

Surface plasmon-coupled emission (SPCE) is the directional radiation of light into a substrate due to excited fluorophores above a thin metal film. To date, SPCE has only been observed with visible wavelengths using silver or gold films. We now show that SPCE can be observed in the ultraviolet region of the spectrum using thin (20 nm) aluminum films. We observed directional emission in a quartz substrate from the DNA base analogue 2-aminopurine (2-AP). The SPCE radiation occurs within a narrow angle at 59 degrees from the normal to the hemicylindrical prism. The excitation conditions precluded the creation of surface plasmons by the incident light. The directional emission at 59 degrees is almost completely p-polarized, consistent with its origin from surface plasmons due to coupling of excited 2-AP with the aluminum. The emission spectra and lifetimes of the SPCE are those characteristic of 2-AP. Different emission wavelengths radiate at slightly different angles on the prism providing intrinsic spectral resolution from the aluminum film. These results indicate that SPCE can be used with numerous UV-absorbing fluorophores, suggesting biochemical applications with simultaneous surface plasmon resonance and SPCE binding assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737400PMC
http://dx.doi.org/10.1021/ac040004cDOI Listing

Publication Analysis

Top Keywords

surface plasmon-coupled
8
plasmon-coupled emission
8
thin aluminum
8
aluminum films
8
spce observed
8
directional emission
8
surface plasmons
8
spce
7
emission
6
ultraviolet surface
4

Similar Publications

Plasmonic structured illumination microscopy (PSIM) is a super-resolution technique that utilizes surface plasmon polaritons (SPPs) with higher frequency as the structured light; thus, it is able to break the diffraction limit with a 3-4 times resolution enhancement. However, the low efficiency of near-field fluorescence collection results in a low imaging signal-to-noise ratio (SNR) of PSIM. In this paper, we propose a method to enhance the performance of PSIM with surface plasmon coupled emission (SPCE).

View Article and Find Full Text PDF

Brightening dark excitons in transition metal dichalcogenide monolayers (MLs) can provide large-area ultrathin devices for applications in quantum information science and optoelectronics. For practical applications of dark excitons, a robust and bright emission over a wide area at room temperature is desirable; however, no reliable approach has been demonstrated thus far. In this study, an efficient approach is presented for brightening dark excitons at room temperature over a large area of a WSe ML via coupling between plasmons and dark excitons.

View Article and Find Full Text PDF

Plasmonic regulation introduced by metallic nanoparticles is a useful method to improve the detection performance of plasmon-based systems. Herein, we observed a unique enhancement of surface plasmon-coupled emission (SPCE) using plate-shaped plasmonic nanostructures. By assembling Au nanoplates (Au NPLs) via electrostatic adsorption between the Au nanofilm and the quantum dot (QD) layer (630 nm), the fluorescence signal of SPCE was enhanced 90 times more than that of normal SPCE after the conditions were optimized.

View Article and Find Full Text PDF

The photoluminescence properties of quantum dots (QDs) are often enhanced by eliminating surface trap states through chemical methods. Alternatively, a physical approach is presented here for improving photoluminescence purity in QDs by employing frequency-specific plasmon resonance coupling. Emitter-bound plasmonic hybrids are designed by electrostatically binding negatively charged QDs in water to positively charged gold nanoparticles having a thin polymer coating.

View Article and Find Full Text PDF

Accurately modeling plasmon-modified fluorescence is important for understanding and guiding the design of experimental nanostructures that reliably enhance fluorescence. They are of particular interest due to their potential to allow localized "hot spots" of high fluorescence enhancement in a reproducible manner. Given the increasingly prevalent use of the COMSOL Multiphysics software package for simulating these phenomena, we investigate its accuracy using an analytically tractable model consisting of a gold nanosphere interacting with either a plane wave or a radiating point dipole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!