A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Matrix reactivity of Al and Ga atoms (M) in the presence of silane: generation and characterization of the eta2-coordinated complex M.SiH4, the insertion product HMSiH3, and the MI species MSiH3 in a solid argon matrix. | LitMetric

Matrix isolation experiments give evidence for the formation of the loosely bonded metal-silane complex M.SiH(4) by the spontaneous reaction of Al or Ga atoms (M) with silane in a solid Ar matrix at 12 K; however, Ga(2) appears to insert spontaneously into an Si--H bond to form HGaGaSiH(3), probably with the structure HGa(micro-SiH(3))Ga. In M.SiH(4) the metal atom is eta(2)-coordinated by the silane, resulting in a species with C(2v) symmetry. The complex has a distinctive photochemistry: it can be converted on photolysis at lambda approximately 410 or approximately 254 nm to its tautomer, HMSiH(3), which also has a doublet ground electronic state and from which it can be regenerated with lambda approximately 580 nm radiation. Broadband UV-visible photolysis (lambda=200-800 nm) results in decomposition of HMSiH(3), the univalent species MSiH(3) being the only detectable product. The experimental data collected for several silane isotopomers (SiH(4), SiD(4), and SiD(3)H) and different reagent concentrations, together with the results of sophisticated quantum chemical calculations, are used to explore in detail the properties of the detected species and the reaction pathways compassing their formation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200305493DOI Listing

Publication Analysis

Top Keywords

complex msih4
8
species msih3
8
matrix
4
matrix reactivity
4
reactivity atoms
4
atoms presence
4
silane
4
presence silane
4
silane generation
4
generation characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!