Nitrile hydratase (NHase) is used in the commercial conversion of acrylonitrile to acrylamide. There are two main types of NHase: the iron containing and the cobalt containing NHase. They catalyze the conversion of a wide variety of nitriles to their corresponding amides. The Co-NHases are more robust and have wider substrate specificity than the Fe-NHase. We have used dihedral and positional variational Monte Carlo conformational searches to determine the conformational space available to acrylonitrile and bromoxynil bound to the iron in the active site of NHase. Dioxane is an Fe-NHase inhibitor, but has no effect on Co-NHase activity. Our conformational searches showed that although the dioxane restricts the conformational freedom of the iron coordinated acrylonitrile, there is enough room in the active site for both the acrylonitrile and dioxane. A conformational search of dioxane in the active site of Fe-NHase, in the absence of a substrate, revealed that the acrylonitrile and dioxane do not share the same space. We have also shown that if the function of the metal ions in NHases is to activate the nitrile by binding to it and acting as a Lewis acid, then the entrance and channel residues are most likely responsible for Fe-NHase's inability to hydrolize bromoxynil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b313380j | DOI Listing |
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA.
Background: Presenilin1 (PS1)/γ-secretase cleaves within the transmembrane domain of numerous receptor substrates. Mutations in PS1 have implications on the catalytic subunit of γ-secretase decreasing its activity and becoming a potential causative factor for Familial Alzheimer's Disease (FAD). This work studies the role of PS1/γ-secretase on the processing, angiogenic signaling, and functions of VEGFR2 and the effects of PS1 FAD mutants on the γ-secretase-mediated epsilon cleavage of VEGFR2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: While compelling evidence highlights the importance of myeloid cells in the etiology of Alzheimer's Disease (AD), the relevance of immunometabolism still requires further exploration. Our analysis integrating AD genetics and myeloid cell genomics shows that lower levels of LACTB expression in myeloid cells is protective against AD, a finding supported by proteomics studies. As a mitochondrial active-site serine protein, LACTB has implications for mitochondrial morphology and bioenergetics.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Seizures are highly comorbid with Alzheimer's disease (AD). We and others have demonstrated worsened pathological and cognitive outcomes in AD patients with seizure history and after seizure induction in AD mouse models. Central to AD progression is the spread of tau along neuronal connections, which can be modelled by intracerebral injection of human AD brain derived tau lysate (AD-tau), but whether seizures impact the spread of tau is unknown.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States.
Electronic structure calculations in enzymes converge very slowly with respect to the size of the model region that is described using quantum mechanics (QM), requiring hundreds of atoms to obtain converged results and exhibiting substantial sensitivity (at least in smaller models) to which amino acids are included in the QM region. As such, there is considerable interest in developing automated procedures to construct a QM model region based on well-defined criteria. However, testing such procedures is burdensome due to the cost of large-scale electronic structure calculations.
View Article and Find Full Text PDFTypical biosensing platforms are based on the "lock-and-key" approach, providing high specificity and sensitivity for environmental and food safety monitoring. However, they are limited in their ability to detect multiple analytes simultaneously. With the use of pattern identification methods, biosensor arrays can detect faint fluctuations caused by multiple analytes with similar properties in complex systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!