Experiments were conducted to examine whether performance in hippocampally-mediated learning tasks is influenced by testosterone (T) and/or its 5alpha-reduced metabolites, dihydrotestosterone (DHT) and 3alpha-androstanediol (3alpha-diol). Performance in the conditioned fear and inhibitory avoidance tasks were examined in intact and gonadectomized (GDX), androgen-replaced rats. In Experiment 1, the behavior of intact and GDX rats in the conditioned fear paradigm were compared. GDX rats spent more time freezing, an index of increased learning, in the context, hippocampally-mediated task, but not in the cued, amygdala-mediated task. In Experiment 2, GDX rats were administered T, DHT, 3alpha-diol, estrogen (E2), or vehicle 1 mg/kg sc after training in the conditioned fear paradigm. T-, 3alpha-diol-, or E2-, compared with vehicle-administered rats, spent significantly more time freezing in the contextual, but not the cued, condition. In Experiment 3, intact compared with GDX rats had significantly longer crossover latencies, indicating better performance, in the inhibitory avoidance task. In Experiment 4, T, DHT, 3alpha-diol, or vehicle 1 mg/kg sc was administered to GDX rats immediately following training in the inhibitory avoidance task. Rats administered T, DHT, or 3alpha-diol had significantly longer crossover latencies compared with vehicle controls. In Experiment 5, androgen levels in the hippocampus were elevated 1 h following administration, when androgen exposure is essential for consolidation. These data indicate that androgens effects to enhance learning may be mediated in part by actions of 5alpha-reduced metabolites in the hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2004.04.024 | DOI Listing |
bioRxiv
February 2024
Physiology Department, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067.
Gonadal steroids play a modulatory role in cocaine use disorders, and are responsible for many sex differences observed in the behavioral response to cocaine. In females, it is well established that estradiol enhances the behavioral response to cocaine. In males, we have recently shown that testosterone enhances sensitization to cocaine but its mechanism of action remains to be elucidated.
View Article and Find Full Text PDFPsychoneuroendocrinology
May 2024
Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico. Electronic address:
Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats.
View Article and Find Full Text PDFBehav Brain Res
July 2023
Department of Sports Medicine, Hebei Sport University, Shijiazhuang, PR China. Electronic address:
Testosterone deficiency may induce behavioural changes in individuals. Oxidative stress resulting from a redox imbalance may be implicated in the initiation and progression of neurobehavioural disorders. However, whether exogenous testosterone intervention in male gonadectomised (GDX) rats ameliorates oxidative stress and plays a neuroprotective role remains unknown.
View Article and Find Full Text PDFJ Neuroendocrinol
June 2022
Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
Behavioural flexibility is essential to adapt to a changing environment and depends on the medial prefrontal cortex (mPFC). Testosterone administration decreases behavioural flexibility. It is well known that testosterone is produced in the gonads, but testosterone is also produced in the brain, including the mPFC and other nodes of the mesocorticolimbic system.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2021
Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!