Refinement of the conformation of UDP-galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization.

J Am Chem Soc

Department of Biochemistry and Molecular Genetics, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-2041, USA.

Published: July 2004

The STD NMR technique has originally been described as a tool for screening large compound libraries to identify the lead compounds that are specific to target proteins of interest. The application of this technique in the qualitative epitope mapping of ligands weakly binding to proteins, virus capsid shells, and nucleic acids has also been described. Here we describe the application of the STD NMR intensity-restrained CORCEMA optimization (SICO) procedure for refining the bound conformation of UDP-galactose in galactosyltransferase complex using STD NMR intensities recorded at 500 MHz as the experimental constraints. A comparison of the SICO structure for the bound UDP-galactose in solution with that in the crystal structure for this complex shows some differences in ligand torsion angles and V253 side-chain orientation in the protein. This work describes the first application of an STD NMR intensity-restrained CORCEMA optimization procedure for refining the torsion angles of a bound ligand structure. This method is likely to be useful in structure-based drug design programs since most initial lead compounds generally exhibit weak affinity (millimolar to micromolar) to target proteins of pharmaceutical interest, and the bound conformation of these lead compounds in the protein binding pocket can be determined by the CORCEMA-ST refinement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja048703uDOI Listing

Publication Analysis

Top Keywords

std nmr
20
nmr intensity-restrained
12
intensity-restrained corcema
12
corcema optimization
12
lead compounds
12
conformation udp-galactose
8
target proteins
8
application std
8
procedure refining
8
bound conformation
8

Similar Publications

Effects of bright light therapy on cingulate cortex dynamic functional connectivity and neurotransmitter activity in young adults with subthreshold depression.

J Affect Disord

January 2025

Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China. Electronic address:

Background: The neurobiological mechanisms behind the antidepressant effect of bright light therapy (BLT) are unclear. We aimed to explore the dynamic functional connectivity (dFC) changes of the cingulate cortex (CC) in subthreshold depression (StD).

Methods: The StD participants (38 BLT and 39 placebo) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and mood assessment before and after eight-week BLT.

View Article and Find Full Text PDF

Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.

Neuroimage

January 2025

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA. Electronic address:

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study.

Korean J Radiol

January 2025

Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2) and a conventional T2-w FSE Dixon sequence (T2) for breast magnetic resonance imaging (MRI).

Materials And Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2 and T2 sequences were acquired for each patient.

View Article and Find Full Text PDF

Multifractal dynamic changes of spontaneous brain activity in psychiatric disorders: Adult attention deficit-hyperactivity disorder, bipolar disorder, and schizophrenia.

J Affect Disord

January 2025

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Electronic address:

It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • Heparanase is a key enzyme in the breakdown of heparan sulfate, contributing to tumor growth and metastasis, making it a target for cancer treatments.
  • Researchers synthesized specific trisaccharides and a tetrasaccharide that inhibit heparanase activity, focusing on glycol-split versions as potential inhibitors.
  • Studies using STD NMR and molecular docking revealed that these glycol-split trisaccharides had stronger binding and inhibitory effects against heparanase compared to their intact forms, providing insight into their mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!