Using ultrapure water in ion chromatography to run analyses at the ng/L level.

J Chromatogr A

Research and Development, Lab Water Division, BP 307, Millipore, F-78094 St. Quentin-Yvelines, France.

Published: June 2004

Thanks to enhanced capabilities, ion chromatography (IC) occupies an increasing position in many types of applications. Achieving ideal performances for an extended life-time can only be reached, however, if the IC system is operated in optimum experimental conditions. Among the various parameters that need to be controlled, water is particularly important, because it is used throughout the analysis, from sample preparation to column rinsing, elution, and mobile phase preparation. More and more, devices are included in IC systems to generate the eluent in situ, and ultrapure water becomes the major reagent. Data of pre-concentration of high purity water show that detection limits at the ng/L level can be expected with water purified using the right combination of technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2004.04.013DOI Listing

Publication Analysis

Top Keywords

ultrapure water
8
ion chromatography
8
ng/l level
8
water ion
4
chromatography analyses
4
analyses ng/l
4
level enhanced
4
enhanced capabilities
4
capabilities ion
4
chromatography occupies
4

Similar Publications

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

The objective of this study was to conduct a comparative analysis of the performance of hydrogels prepared from two distinct raw materials and to identify the hydrogels with the optimal overall capacity for dry farming applications. Ten grafted polymer hydrogels were prepared from melon peel (MP) and orange peel (OP). A comparative analysis of the degree of swelling, water absorption time, pH range, reusability, and soil water retention and water-holding capacity of the two hydrogels revealed that the MP-based hydrogels exhibited superior performance in all evaluated parameters when compared to their OP-based counterparts.

View Article and Find Full Text PDF

Microdifferential Pressure Measurement Device for Cellular Microenvironments.

Bioengineering (Basel)

December 2024

Fusion Oriented Research for Disruptive Science and Technology, Japan Science and Technology Agency, 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan.

Mechanical forces influence cellular proliferation, differentiation, tissue morphogenesis, and functional expression within the body. To comprehend the impact of these forces on living organisms, their quantification is essential. This study introduces a novel microdifferential pressure measurement device tailored for cellular-scale pressure assessments.

View Article and Find Full Text PDF

This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.

View Article and Find Full Text PDF

Preparation of ofloxacin molecularly imprinted polymer Raman sensor based on magnetic graphene oxide.

Anal Bioanal Chem

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.

Ofloxacin is a commonly used quinolone antibiotic that is also used as a feed supplement in livestock production and in plant disease prevention and treatment. However, the excessive use and abuse of ofloxacin will accumulate along the food chain and endanger human health. Therefore, the development of a simple, rapid, and sensitive detection method for the determination of ofloxacin is critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!