AI Article Synopsis

  • The study focuses on the biomechanical properties of a new collagen type I scaffold used for growing chondrocytes, which are crucial for cartilage development.
  • The research involved culturing human chondrocytes in a 3D scaffold over six weeks, assessing their response to uniaxial compression, like stiffness and viscoelastic characteristics.
  • Results showed that maximum penetration force peaked at seven days but dropped significantly after that, with no major changes in creep properties or differences between chondrocyte samples and controls, indicating more exploration is needed on the scaffold’s properties.

Article Abstract

Aim: Scaffolds for the cultivation of chondrocytes are of increasing importance. So far, only little is known about their biomechanical properties. The present preliminary study addresses the biomechanical characteristics of a new collagen type I scaffold for the cultivation of chondrocytes.

Material And Methods: Human chondrocytes were amplified in a monolayer and then cultivated in a 3D-scaffold over a period of up to 6 weeks. The biomechanical tests addressed the properties under uniaxial compression including stiffness and viscoelastic characteristics (creep and retardation). The obtained values were normalized against the thickness of the specimens and expressed as ratios. In addition, we present histological and quantitative PCR results (for collagen type II and aggrecan).

Results: The maximum force (or penetration force) revealed its highest values after a period of seven days. At this time the median value was 40 mN/mm. In the following period, a marked drop of the values was observed (19.8 mN/mm). With respect to the creep properties, we did not find any major changes over the period of six weeks. The median values were between 0.24 and 0.29 mm/mm. There were no significant differences between the samples seeded with chondrocytes and those which served as controls. A re-expansion of the samples was found with median values between 0.026 and 0.049 mm/mm (retardation). However, the original thickness was not reached after a period of 30 seconds with relief of the strain. Again, major differences of the values with respect to the duration of cultivation were not observed. Light microscopy revealed collagen type II and proteoglycans only in the pericellular region.

Conclusion: In this study not all of the biomechanical properties of the cultivated tissue were investigated. The limitation of the tests to stiffness and viscoelastic properties was reasonable in view of a potential routine use. In addition, it may facilitate a comparison between different matrix systems. In our study, the cultivation of cells within the collagen matrix did not alter the mechanical properties of the scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2004-822829DOI Listing

Publication Analysis

Top Keywords

collagen type
12
scaffold cultivation
8
biomechanical properties
8
period weeks
8
stiffness viscoelastic
8
median values
8
properties
6
values
6
cultivation
5
period
5

Similar Publications

Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization.

Biomaterials

January 2025

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:

The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.

View Article and Find Full Text PDF

Quantifying Bone Collagen Fingerprint Variation Between Species.

Mol Ecol Resour

January 2025

Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, UK.

Collagen is the most ubiquitous protein in the animal kingdom and one of the most abundant proteins on Earth. Despite having a relatively repetitive amino acid sequence motif that enables its triple helical structure, in type 1 collagen, that dominates skin and bone, there is enough variation for its increasing use for the biomolecular species identification of animal tissues processed or degraded beyond the amenability of DNA-based analyses. In recent years, this has been most commonly achieved through the technique of collagen peptide mass fingerprinting (PMF) known as ZooMS (Zooarchaeology by Mass Spectrometry), applied to the analysis of tens of thousands of samples across over one hundred studies in the past decade alone.

View Article and Find Full Text PDF

Background: Kidney fibrosis is a suggested cause of kidney failure and premature mortality. Because collagen type VI is closely linked to kidney fibrosis, we aimed to evaluate whether urinary endotrophin, a collagen type VI fragment, is associated with graft failure and mortality among kidney transplant recipients (KTR).

Methods: In this prospective cohort study, KTR with a functioning graft ≥1-y posttransplantation were recruited; 24-h urinary endotrophin excretion was measured using an ELISA method.

View Article and Find Full Text PDF

Introduction: Hepatic fibrosis (HF), a progressive chronic liver disease, is a serious threat to global public health. The lack of preventive and therapeutic strategies has created an urgent need for effective anti-fibrosis agents. There is growing evidence that natural products might provide safe and effective interventions for HF.

View Article and Find Full Text PDF

Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!