Saccharomyces cerevisiae Hop2 and Mnd1 are abundant meiosisspecific chromosomal proteins, and mutations in the corresponding genes lead to defects in meiotic recombination and in homologous chromosome interactions during mid-prophase. Analysis of various double mutants suggests that HOP2, MND1, and DMC1 act in the same genetic pathway for the establishment of close juxtaposition between homologous meiotic chromosomes. Biochemical studies indicate that Hop2 and Mnd1 proteins form a stable heterodimer with a higher affinity for double-stranded than single-stranded DNA, and that this heterodimer stimulates the strand assimilation activity of Dmc1 in vitro. Together, the genetic and biochemical results suggest that Hop2, Mnd1, and Dmc1 are functionally interdependent during meiotic DNA recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC490024 | PMC |
http://dx.doi.org/10.1073/pnas.0404195101 | DOI Listing |
Nat Commun
October 2024
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
Homologous recombination during meiosis is critical for chromosome segregation and also gives rise to genetic diversity. Genetic exchange between homologous chromosomes during meiosis is mediated by the recombinase Dmc1, which is capable of recombining DNA sequences with mismatches. The Hop2-Mnd1 complex mediates Dmc1 activity.
View Article and Find Full Text PDFNucleic Acids Res
September 2023
Department of Chemistry, National Taiwan University, Taiwan.
In meiosis, Dmc1 recombinase and the general recombinase Rad51 are responsible for pairing homologous chromosomes and exchanging strands. Fission yeast (Schizosaccharomyces pombe) Swi5-Sfr1 and Hop2-Mnd1 stimulate Dmc1-driven recombination, but the stimulation mechanism is unclear. Using single-molecule fluorescence resonance energy transfer (smFRET) and tethered particle motion (TPM) experiments, we showed that Hop2-Mnd1 and Swi5-Sfr1 individually enhance Dmc1 filament assembly on single-stranded DNA (ssDNA) and adding both proteins together allows further stimulation.
View Article and Find Full Text PDFJ Hum Genet
November 2023
Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
Meiotic arrest is a common pathologic phenotype of non-obstructive azoospermia (NOA), yet its genetic causes require further investigation. Meiotic nuclear divisions 1 (MND1) has been proved to be indispensable for meiotic recombination in many species. To date, only one variant of MND1 has been reported associated with primary ovarian insufficiency (POI), yet there has been no report of variants in MND1 associated with NOA.
View Article and Find Full Text PDFBiomolecules
April 2023
Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan.
Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!