Cutaneous mast cell responses to physical (thermal, mechanical, or osmotic) stimuli underlie the pathology of physical urticarias. In vitro experiments suggest that mast cells respond directly to these stimuli, implying that a signaling mechanism couples functional responses to physical inputs in mast cells. We asked whether transient receptor potential (vanilloid) (TRPV) cation channels were present and functionally coupled to signaling pathways in mast cells, since expression of this channel subfamily confers sensitivity to thermal, osmotic, and pressure inputs. Transcripts for a range of TRPVs were detected in mast cells, and we report the expression, surface localization, and oligomerization of TRPV2 protein subunits in these cells. We describe the functional coupling of TRPV2 protein to calcium fluxes and proinflammatory degranulation events in mast cells. In addition, we describe a novel protein kinase A (PKA)-dependent signaling module, containing PKA and a putative A kinase adapter protein, Acyl CoA binding domain protein (ACBD)3, that interacts with TRPV2 in mast cells. We propose that regulated phosphorylation by PKA may be a common pathway for TRPV modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212017PMC
http://dx.doi.org/10.1084/jem.20032082DOI Listing

Publication Analysis

Top Keywords

mast cells
28
signaling module
8
mast
8
cells
8
responses physical
8
trpv2 protein
8
protein
5
trpv2-pka signaling
4
module transduction
4
physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!