Background: Respiratory syncytial virus (RSV)-induced diseases are mediated through active cytokines released during infection. We hypothesized that RSV infection causes bronchial epithelial monolayer permeability in vitro via induction of vascular endothelial growth factor (VEGF).

Methods: Human bronchial epithelial cells were infected with RSV. In some cultures, VEGF antibody was included to block VEGF response; in other cultures, palivizumab was added to block RSV infection. Permeability was assessed in real-time using electric cell-substrate impedance sensing. VEGF release was assessed using enzyme-linked immunosorbent assay. Gap formation was assessed using live cell imaging.

Results: RSV-infected cells demonstrated a decrease in the resistance of the monolayer indicating an increase in permeability; this increase was blocked with VEGF-specific antibody, and palivizumab. Intercellular gap formation developed in RSV-infected epithelial monolayers.

Conclusion: RSV increases permeability of the bronchial airway epithelial monolayer via VEGF induction.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.126.1.186DOI Listing

Publication Analysis

Top Keywords

bronchial epithelial
12
respiratory syncytial
8
syncytial virus
8
rsv infection
8
epithelial monolayer
8
gap formation
8
epithelial
5
permeability
5
virus increased
4
bronchial
4

Similar Publications

Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.

View Article and Find Full Text PDF

Study of the effect of azithromycin on airway remodeling in asthma via the SAPK/JNK pathway.

J Cardiothorac Surg

December 2024

Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009.

Objective: Asthma is a prevalent status attributing to lower respiratory tract chronic inflammation. Azithromycin (AZM) is known to be effective against asthma. Thus, this study delved into the mechanism of AZM repressing airway remodeling (AR) via the SAPK/JNK pathway in asthma.

View Article and Find Full Text PDF

Exposure to ambient air pollution is associated with several noncommunicable diseases, and it adversely affects the respiratory system and other organ systems. Several studies have investigated the underlying mechanisms of biological response to air pollutants using conventional techniques, but there is a lack of research on the effects of air pollution at the cellular level. This study developed a dual system that combines PM (particulate matter <2.

View Article and Find Full Text PDF

Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model.

Int Immunopharmacol

December 2024

Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

Background: Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent yet manageable respiratory condition. However, treatments presently used normally have side effects and cannot cure COPD, making it urgent to explore effective medications. The ginsenoside Rg3 (Rg3) has been shown to have anti-inflammatory and anti-tumor properties and can improve COPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!