It is well established that the prion protein (PrP) contains metal ion binding sites with specificity for copper. Changes in copper levels have been suggested to influence incubation time in experimental prion disease. Therefore, we studied the effect of heavy metal ions (Cu(2+), Mn(2+), Ni(2+), Co(2+), and Zn(2+)) in vitro in a model system that utilizes changes in the concentration of SDS to induce structural conversion and aggregation of recombinant PrP. To quantify and characterize PrP aggregates, we used fluorescently labelled PrP and cross-correlation analysis as well as scanning for intensely fluorescent targets in a confocal single molecule detection system. We found a specific strong pro-aggregatory effect of Mn(2+) at low micromolar concentrations that could be blocked by nanomolar concentration of Cu(2+). These findings suggest that metal ions such as copper and manganese may also affect PrP conversion in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.06.075 | DOI Listing |
Plants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Industrial wastewater containing heavy metal ions presents serious economic risk to the environment. In this study, a novel compound of aminated cellulose with jeffamine EDR148 was prepared to improve cellulose's adsorptive behavior towards metal ions. This study undertook a straightforward and efficient cellulose modification through homogeneous chlorination in N,N'-butylmethylimidazolium chloride to produce 6-deoxychlorocellulose (Cell-Cl), followed by a reaction with jeffamine EDR148 and ultimately resulting in the formation of aminated cellulose (Cell-Jef148).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.
View Article and Find Full Text PDFMolecules
January 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!