AI Article Synopsis

  • A new resonance Rayleigh scattering (RRS) method was developed to determine the critical micelle concentration (CMC) of Triton X-100 in both aqueous and beta-cyclodextrin solutions.
  • The study found inflection points indicating the CMC at concentrations of 5.0 x 10(-4) mol l(-1) for aqueous and 1.1 x 10(-3) mol l(-1) for beta-cyclodextrin solutions, which agreed with previous findings from other methods.
  • This RRS method is shown to be quick, precise, and does not require any probes, making it an innovative approach for measuring surfactant CMC values.

Article Abstract

A new method for the determination of the critical micelle concentration (CMC) of Triton X-100 in aqueous solution and beta-cyclodextrin solution by resonance Rayleigh scattering (RRS) has been developed. The method is based on the measurement of the RRS intensity of different concentration of Triton X-100 in aqueous solution and beta-cyclodextrin solution (6.0 x 10(-4) mol l(-1)). When the RRS intensities were plotted against the concentration of Triton X-100, an inflection point appeared at the Triton X-100 concentration of 5.0 x 10(-4) mol l(-1) in aqueous solution and 1.1 x 10(-3) mol l(-1) in beta-cyclodextrin solution, respectively. These values of concentration corresponded to the CMC of Triton X-100 in aqueous solution and beta-cyclodextrin solution, which also agreed closely with the results reported by surface tension and UV-Vis absorption spectrophotometry. Therefore, the present RRS method is very convenient, rapid and accurate and can be used as a new technology for the determination of CMC values of surfactants without any probe. The relationship between the RRS intensity and the concentration, aggregate state and the aggregate molecular size of Triton X-100 has been primarily discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2003.09.018DOI Listing

Publication Analysis

Top Keywords

triton x-100
28
aqueous solution
16
beta-cyclodextrin solution
16
concentration triton
12
x-100 aqueous
12
solution beta-cyclodextrin
12
mol l-1
12
method determination
8
determination critical
8
critical micelle
8

Similar Publications

Effects of nonionic surfactants on life history traits of Drosophila melanogaster.

Environ Sci Pollut Res Int

January 2025

University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France.

Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules.

View Article and Find Full Text PDF

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

In bone tissue engineering, a suitable scaffold is the key. Due to their similar composition to bone tissue, special structure, good mechanical properties, and osteogenic properties, acellular fish scale scaffolds are potential scaffolds for bone tissue engineering. At present, the fish scale decellularization scheme mostly uses a combination of sodium dodecyl sulfate and ethylenediamine tetraacetic acid (EDTA), but this method has problems.

View Article and Find Full Text PDF

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase.

Int J Biol Macromol

January 2025

Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!