Carbonate formation on bioactive glasses.

Langmuir

Department of Chemistry I.F.M., University of Turin, Consortium INSTM, Research Unit of Turin University, via P. Giuria 7, 10125 Torino, Italy.

Published: July 2004

The system termed 58S is a sol-gel-synthesized bioactive glass composed of SiO2, CaO, and P2O5, used in medicine as bone prosthetic because, when immersed in a physiological fluid, a layer of hydroxycarbonate apatite is formed on its surface. The mechanism of bioactive glass 58S carbonation was studied in the vacuum by means of in-situ FTIR spectroscopy with the use of CO2, H2O, and CD3CN as probe molecules. The study in the vacuum was necessary to identify both the molecules specifically involved in the carbonation process and the type of carbonates formed. Bioactive glass 58S was compared to a Ca-doped silica and to CaO. On CaO, ionic carbonates could form by contact with CO2 alone, whereas on 58S and on Ca-doped silica carbonation occurred only if both CO2 and an excess of H2O were present on the sample. The function of H2O was not only to block surface cationic sites, so that CO2 could not manifest its Lewis base behavior, but also to form a liquid-like (mono)layer that allowed the formation of carbonate ions. The presence of H2O is also supposed to promote Ca2+ migration from the bulk to the surface. Carbonates formed at the surface of CaO and of Ca-bearing silicas (thus including bioactive glasses) are of the same type, but are produced through two different mechanisms. The finding that a water excess is necessary to start heavy carbonation on bioactive glasses seemed to imply that the mechanism leading to in-situ carbonation simulates, in a simplified and easy-to-reproduce system, what happens both in solution, when carbonates are incorporated in the apatite layer, and during sample shelf-aging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la049723cDOI Listing

Publication Analysis

Top Keywords

bioactive glasses
12
bioactive glass
12
formed surface
8
glass 58s
8
carbonates formed
8
ca-doped silica
8
bioactive
6
carbonation
5
carbonate formation
4
formation bioactive
4

Similar Publications

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.

View Article and Find Full Text PDF

Aims: This study aimed to evaluate the enamel remineralization effect of fluoride-incorporated bioactive glass (F-BG) toothpaste on artificial subsurface caries in primary teeth.

Materials And Methods: Forty sound primary maxillary incisors were subjected to a demineralizing solution for four days to induce artificial enamel caries. The teeth were randomly divided into four experimental groups ( = 10 per group): Group I, F-BG toothpaste (530 ppm fluoride) (BiominF); Group II, 0.

View Article and Find Full Text PDF

Measurement of Fluoride Ion Release From Restorative Material Using an Ion-Selective Electrode and Ultraviolet-Visible Light Spectrophotometer.

J Int Soc Prev Community Dent

December 2024

Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

Background: Importance of fluoride in dental restorative materials for preventing secondary caries. Several commercially available tooth-colored dental restorative materials, such as glass ionomer cement, resin composites, and compomers were used for this study.

Aim: To evaluate the amount of fluoride release from tooth-colored restorative materials [Conventional Glass Ionomer Cement (GC Fuji II)], Resin-modified Glass Ionomer Cement (ACTIVA BioACTIVE-RESTORATIVE), and Giomer (BEAUTIFIL II LS)] using ion-selective electrode (ISE) and spectrophotometer using zirconyl alizarin red dye method.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!