The combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (D1) of 1, 4, and 20 microg/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20 pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF). The improvement is mainly due to the lower colloid background discharged from the AsFlFFF channel. The combined method of AsFlFFF-LIBD is then applied to the analysis of iron oxi/hydroxide colloids being considered as potential carriers for the radionuclide migration from a nuclear waste repository. Our LIBD arrangement is less sensitive for iron colloid detection as compared to reference polystyrene particles which results in a detection limit of approximately 240 microg/L FeOOH for the AsFlFFF-LIBD analysis. This is superior to the detection via UV-Vis absorbance and comparable to ICP-MS detection. Size information (mean size 11-18 nm) for different iron oxi/hydroxide colloids supplied by the present method is comparable to that obtained by sequential ultrafiltration and dynamic light scattering. A combined on-line ICP-MS detection is used to gain insight into the colloid-borne main and trace elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2004.03.047 | DOI Listing |
J Hazard Mater
April 2015
National Museum of Natural Sciences, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain. Electronic address:
Arsenic and iron speciation in the dispersible colloid fraction (DCF; 10-1000 nm) from an As-rich mine waste pile, sediments of a streambed that collects runoff from waste pile, the streambed subsoil, and the sediments of a downstream pond were investigated by combining asymmetrical-flow field-flow fractionation (AsFlFFF)/inductively-coupled plasma-mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and X-ray absorption (XAS) spectroscopy. Calcium, Fe and As (Fe/As molar ratio ∼ 1) were the main components of the DCF from waste pile. TEM/EDS and As and Fe XAS analysis revealed the presence of nanoparticle scorodite in this same DCF, as well as Fe nanoparticles in all samples downstream of the waste pile.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2012
CITIMAC, F Ciencias, U. de Cantabria, 39005 Santander, Spain.
The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction.
View Article and Find Full Text PDFJ Chromatogr A
June 2004
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, PO Box 3640, D-76021 Karlsruhe, Germany.
The combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (D1) of 1, 4, and 20 microg/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20 pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!