Gene therapy of galactocerebrosidase (GALC) deficient mice (Twitcher mutants) requires a fast and sensitive assay to detect transduced cells in vitro and in vivo. We have developed a new rapid histochemical method that specifically detects GALC activity in situ in neural cells using 5-Br-3Cl-beta-galactopiranoside (X-Gal) in the presence of taurodeoxycholic and oleic acids to enhance suspension of the substrate at low pH. Using this method, we observed robust X-Gal staining in diverse neuronal populations and interfascicular oligodendrocytes in sections from normal mouse brain. In contrast, sections of Twitcher brain did not show a specific staining pattern in neurons or glial cells. The availability of this new sensitive and rapid in situ detection assay is fundamental for the follow-up of Twitcher mice under gene or cellular therapies to correct central GALC deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20169DOI Listing

Publication Analysis

Top Keywords

mouse brain
8
analysis galactocerebrosidase
4
galactocerebrosidase activity
4
activity mouse
4
brain histological
4
histological staining
4
staining method
4
method gene
4
gene therapy
4
therapy galactocerebrosidase
4

Similar Publications

Mice deficient in TWIK-1 are more susceptible to kainic acid-induced seizures.

iScience

January 2025

School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea.

TWIK-1 belongs to the two-pore domain K (K2P) channel family, which plays an essential role in the background K conductance of cells. Despite the development of exon 2-deleted knockout (KO) mice, the physiological role of TWIK-1 has remained largely unknown. Here, we observed that the exon 2-deleted KO mice expressed an internally deleted TWIK-1 (TWIK-1 ΔEx2) protein, which unexpectedly acts as a functional K channel.

View Article and Find Full Text PDF

Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.

View Article and Find Full Text PDF

Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.

View Article and Find Full Text PDF

Measuring whole-brain distributed functional activity is an important unmet need in neuroscience, requiring high temporal resolution and cellular specificity across large volumes. Functional optoacoustic neuro-tomography (FONT) with genetically encoded calcium ion indicators is a promising approach towards this goal. However, it has not yet been applied in the near-infrared (NIR) range that provides deep penetration and low vascular background optimal for neuroimaging.

View Article and Find Full Text PDF

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!