Objective: To determine the signal transduction pathways in CD14+ synovial cells from patients with rheumatoid arthritis (RA) after CD40 ligation, and to examine their role in amplifying synovial inflammation in affected joints.

Methods: Expression of messenger RNA was analyzed using quantitative reverse transcription-polymerase chain reaction. Cytokines and chemokines were measured using enzyme-linked immunosorbent assay. Activation of kinases was detected using Western blotting. Nuclear translocation of NF-kappaB was examined using immunohistochemistry. CD14+ synovial cells were enriched using magnetic cell sorting. Fibroblast-like synoviocytes (FLS) were obtained by passaging primary synovial cell culture.

Results: Stimulation of CD14+ synovial cells from RA patients by recombinant soluble CD154 (rsCD154) significantly induced expression of tumor necrosis factor alpha (TNFalpha), interleukin-1alpha (IL-1alpha), and IL-1beta. CD14+ RA synovial cells stimulated with rsCD154 plus interferon-gamma (IFNgamma) induced significantly higher production of IL-6, IL-8, and monocyte chemoattractant protein 1 by FLS compared with unstimulated CD14+ synovial cells, through TNFalpha-, IL-1alpha-, and IL-1beta-mediated pathways. Stimulation with rsCD154 plus IFNgamma induced the activation of ERK-1/2, p38 MAPK, and NF-kappaB. Specific inhibitors of MAPK/ERK-1/2 kinases and p38 MAPK significantly reduced the production of TNFalpha and IL-1beta by rsCD154 plus IFNgamma-stimulated CD14+ synovial cells, and also inhibited production of these cytokines by freshly isolated synovial cells from RA patients.

Conclusion: These data indicate that the CD40-CD154 interaction activates the ERK, p38, and NF-kappaB pathways in CD14+ synovial cells from RA patients to produce TNFalpha, IL-1alpha, and IL-1beta, which in turn amplifies inflammatory responses by stimulating FLS. Inhibition of the CD40-CD154 interaction or its signal transduction pathways would be a strong and efficient strategy for the management of synovial inflammation in RA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.20340DOI Listing

Publication Analysis

Top Keywords

synovial cells
36
cd14+ synovial
32
cells patients
16
synovial
12
cells
9
cd14+
8
patients rheumatoid
8
rheumatoid arthritis
8
signal transduction
8
transduction pathways
8

Similar Publications

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is a disabling systemic autoimmune disease worldwide; however, its molecular pathway remains largely unknown. Thus, this study aimed to explore the effects of receptor-interacting serine/threonine kinase 2 (RIPK2) on RA progression and its underlying mechanism.

Material And Methods: RIPK2 expression was analyzed using real-time quantitative polymerase chain reaction, immunohistochemical staining, and Western blot (WB) analysis in RA synovial tissues or cells.

View Article and Find Full Text PDF

Object: Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA.

View Article and Find Full Text PDF

Background: Several clinical trials have shown that immunotherapy plays a pivotal role in the treatment of patients with metastatic synovial sarcoma. Immune-related genes (IRGs) have been demonstrated to predict the immunotherapy response in certain malignant tumours. However, the clinical significance of IRGs in patients with synovial sarcoma (SS) is still unclear.

View Article and Find Full Text PDF

Thymidine phosphorylase participates in platelet activation and promotes inflammation in rheumatoid arthritis.

Toxicol Appl Pharmacol

December 2024

Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The elevated risk of cardiovascular disease (CVD) associated with inflammatory rheumatic diseases has long been recognized. Patients with established rheumatoid arthritis (RA) have a higher mortality rate compared to the general population due to abnormal platelet activation. Thymidine phosphorylase (TYMP) plays a crucial role in platelet activation and thrombosis, following bridging the link between RA and CVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!