Maras Powder (MP) is a special kind of smokeless tobacco widely used in the southeast region of Turkey especially in Kahramanmaras and Gaziantep and other southeastern cities. It is obtained from a tobacco species, Nicotiana rustica L and ash of oak or grapevine wood. Tobacco may increase oxidative stress, which is related to the products of the oxygen metabolism taking place in all cells. Cellular antioxidants, e.g. catalase (CAT), superoxide dismutase (SOD) and glucose 6-phosphate dehydrogenase (G6PD) protect the cell against oxidative damage. An imbalance between the ROS and antioxidants in favour of ROS is described as oxidative stress. In this study, we aimed to investigate the effect of MP on antioxidant enzyme levels and lipid peroxidation. We measured malondialdehyde (MDA), CAT, SOD and G6PD levels in blood of 68 MP users and 30 healthy controls who did not use MP. CAT, SOD and G6PD levels were lower in MP users than in the controls. On the other hand, lipid peroxidation levels (MDA), one of the best indicators of cytological damage, was increased in MP users compared with the controls. The present study showed that MP increases oxidative stress, which may cause many systemic disorders, including arteriosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.1093DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
maras powder
8
smokeless tobacco
8
lipid peroxidation
8
cat sod
8
sod g6pd
8
g6pd levels
8
oxidative
5
effects maras
4
powder smokeless
4

Similar Publications

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

Background: Leukemia may form at any age, from newborns to the elderly, and accounts for considerable mortality worldwide.

Objectives: Nerolidol (NRD) is isolated from the aromatic florae oils and was found to have anticancer activities. However, the role of NRD in antiproliferative and apoptosis actions in acute lymphoblastic leukemia (ALL) is unclear.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!