Cool season crops face intermittent drought. Exposure to drought and other abiotic stresses is known to increase tolerance of the plants against subsequent exposure to such stresses. Storage of environmental signals is also proposed. Preexposure to a dehydration shock improved adaptive response during subsequent dehydration treatment in a cool season crop chickpea (Cicer arietinum). We have identified 101 dehydration-inducible transcripts of chickpea by repetitive rounds of cDNA subtraction; differential DNA-array hybridization followed by northern-blot analysis and analyzed their responses to exogenous application of abscisic acid (ABA). Steady-state expression levels of the dehydration-induced transcripts were monitored during the recovery period between 2 consecutive dehydration stresses. Seven of them maintained more than 3-fold of expression after 24 h and more than 2-fold of expression level even at 72 h after the removal of stress. Noticeably, all of them were inducible by exogenous ABA treatment. When the seedlings were subjected to recover similarly after an exposure to exogenous ABA, the steady-state abundances of 6 of them followed totally different kinetics returning to basal level expression within 24 h. This observation indicated a correlation between the longer period of abundance of those transcripts in the recovery period and improved adaptation of the plants to subsequent dehydration stress and suggested that both ABA-dependent and -independent mechanisms are involved in the maintenance of the messages from the previous stress experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC519075 | PMC |
http://dx.doi.org/10.1104/pp.104.043141 | DOI Listing |
Physiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Crop Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany.
Plant growth-promoting microorganisms can enhance sulfur uptake and boost crop production. This study was conducted to evaluate the changes in physiology, metabolism, and yield of chickpeas following the application of sulfur and two microbial consortia: (1) Thiobacillus sp., Bacillus subtilis, Paraburkholderia fungorum, and Paenibacillus sp.
View Article and Find Full Text PDFSubabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!