Alveolar epithelial cells undergo stretching during breathing and mechanical ventilation. Stretch can modify cell viscoelastic properties, which may compromise the balance of forces in the alveolar epithelium. We studied the viscoelasticity of alveolar epithelial cells (A549) subjected to equibiaxial distention with a novel experimental approach. Cells were cultured on flexible substrates and subjected to stepwise deformations of up to 17% with a device built on an inverted microscope. Simultaneously, cell storage (G') and loss (G'') moduli were measured (0.1-100 Hz) with optical magnetic twisting cytometry. G' and G'' increased with strain up to 64 and 30%, respectively, resulting in a decrease in G''/G' (15%). This stretch-induced response was inhibited by disruption of the actin cytoskeleton with latrunculin A. G' increased with frequency following a power law with exponent alpha = 0.197. G'' increased proportionally to G' but exhibited a more marked frequency dependence at high frequencies. Stretching (14%) caused a fall in alpha (13%). At high stretching amplitudes, actual cell strain (14.4%) was lower than the applied substrate strain (17.3%), which could indicate a partial cell detachment. These data suggest that cytoskeletal prestress modulates the elastic and frictional properties of alveolar epithelial cells in a coupled manner, according to soft glassy rheology. Stretch-induced cell stiffening could compromise the balance of forces at the cell-cell and cell-matrix adhesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00077.2004 | DOI Listing |
Mol Ther
January 2025
Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.
View Article and Find Full Text PDFInt J Hyg Environ Health
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.
Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China.
Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.
View Article and Find Full Text PDFAnn Card Anaesth
January 2025
All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!