Control of motile and invasive cell phenotypes by focal adhesion kinase.

Biochim Biophys Acta

Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: July 2004

Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2004.04.008DOI Listing

Publication Analysis

Top Keywords

fak
12
promoting cell
12
cell
11
invasive cell
8
focal adhesion
8
adhesion kinase
8
cell motility
8
cell movement
8
signaling connections
8
fak function
8

Similar Publications

Downregulation of collagen IV deposition and ITGB1-FAK signaling pathway to inhibit adipogenesis: A novel mechanism of swertiamarin in treating type 2 diabetes mellitus.

Int J Biol Macromol

January 2025

International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:

Extracellular matrix (ECM) and integrins are important biological macromolecules. ECM especially collagen IV (COLIV) deposition modulates the integrin-FAK signaling pathway involved in adipogenesis and is strongly associated with insulin resistance. Type 2 diabetes mellitus (T2DM) mice were given swertiamarin (STM) by intragastric administration.

View Article and Find Full Text PDF

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

G-protein coupled receptor GPR124 protects against podocyte senescence and injury in diabetic kidney disease.

Kidney Int

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China. Electronic address:

Although emerging studies highlight the pivotal role of podocyte senescence in the pathogenesis of diabetic kidney disease (DKD) and aging-related kidney diseases, therapeutic strategies for preventing podocyte senescence are still lacking. Here, we identified a previously unrecognized role of GPR124, a novel adhesion G protein-coupled receptor, in maintaining podocyte structure and function by regulation of cellular senescence in DKD. Podocyte GPR124 was significantly reduced in db/db diabetic (a type 2 diabetic mouse model) and streptozocin-induced diabetic mice (a type 1 diabetic model), which was further confirmed in kidney biopsies from patients with DKD.

View Article and Find Full Text PDF

Objectives: Interleukin-8 (IL-8), a proinflammatory factor in human tissues, plays an important role in inflammation. Type IV collagen, a key component of the basement membrane, interacts with integrins, which are primary receptors in the extracellular matrix (ECM). Integrins are essential for the regulation of various cellular behaviors and signal transduction pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!