Suppression of biosynthetic genes involved in flower color formation is an important approach for obtaining target flower colors. Here we report that flower color of the garden plant Torenia hybrida was successfully modulated by RNA interference (RNAi) against a gene of chalcone synthase (CHS), a key enzyme for anthocyanin and flavonoid biosynthesis. By using each of the coding region and the 3'-untranslated region of the CHS mRNA as an RNAi target, exhaustive and gene-specific gene silencing were successfully induced, and the original blue flower color was modulated to white and pale colors, respectively. Our results indicate that RNAi is quite useful for modulations of flower colors of commercially important garden plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2004.02.019DOI Listing

Publication Analysis

Top Keywords

flower color
16
torenia hybrida
8
chalcone synthase
8
rna interference
8
flower colors
8
flower
6
color modulations
4
modulations torenia
4
hybrida downregulation
4
downregulation chalcone
4

Similar Publications

The characterization of in regulation of flower size through tuning cell expansion genes.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.

Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.

View Article and Find Full Text PDF

Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.

Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase.

View Article and Find Full Text PDF

Genome assembly and multiomic analyses reveal insights into flower and bark colors of Lagerstroemia excelsa.

Plant Physiol Biochem

January 2025

Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL, 32703, USA. Electronic address:

Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L.

View Article and Find Full Text PDF

Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

Sci Total Environ

January 2025

Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA. Electronic address:

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward.

View Article and Find Full Text PDF

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!