Hidden symmetry in chains of biological coupled oscillators.

Phys Rev Lett

Recognition and Formation, PRESTO, Japan Science and Technology Corporation, Japan.

Published: June 2004

We experimentally investigated spatiotemporal patterns in chains of coupled biological oscillators with boundaries and found hidden symmetric patterns that are not straightforwardly derived from explicit geometrical symmetry of the systems. We propose a model of coupled oscillators in chains with a hidden oscillator interconnecting its boundaries. The model can explain all observed patterns including the hidden symmetric ones, while other models such as discrete analogs of Neumann boundary conditions in continuous systems cannot.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.228102DOI Listing

Publication Analysis

Top Keywords

coupled oscillators
8
hidden symmetric
8
hidden
4
hidden symmetry
4
symmetry chains
4
chains biological
4
biological coupled
4
oscillators experimentally
4
experimentally investigated
4
investigated spatiotemporal
4

Similar Publications

Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.

View Article and Find Full Text PDF

Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.

Chaos

January 2025

Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009, Australia.

We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators.

View Article and Find Full Text PDF

Cavity correlations and the onset of charge ordering at charged interfaces: A modified Poisson-Fermi approach.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.

Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!