Soliton solution of continuum magnetization equation in a conducting ferromagnet with a spin-polarized current.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, People's Republic of China.

Published: June 2004

Exact soliton solutions of a modified Landau-Lifshitz equation for the magnetization of conducting ferromagnet in the presence of a spin-polarized current are obtained by means of inverse scattering transformation. From the analytical solution the effects of spin current on the frequency, wave number, and dispersion law of spin wave are investigated. The one-soliton solution indicates obviously current-driven precession and periodic shape variation as well. The inelastic collision of solitons, by which we mean the shape change before and after collision, appears due to the spin current. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and current parameters. This may lead to an potential technique for shape control of spin wave.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.066611DOI Listing

Publication Analysis

Top Keywords

conducting ferromagnet
8
spin-polarized current
8
spin current
8
spin wave
8
current
5
soliton solution
4
solution continuum
4
continuum magnetization
4
magnetization equation
4
equation conducting
4

Similar Publications

Quantum Analog of Landau-Lifshitz-Gilbert Dynamics.

Phys Rev Lett

December 2024

Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.

The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.

View Article and Find Full Text PDF

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

Advancing Room-Temperature Magnetic Semiconductors with Organic Radical Charge Transfer Cocrystals.

Adv Mater

January 2025

Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.

Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.

View Article and Find Full Text PDF

The construction of multilevel magnetic states using materials with perpendicular magnetic anisotropy (PMA) offers a novel approach to enhancing the storage density and read/write efficiency of nonvolatile magnetic memory devices. In this study, optically readable multilevel magnetic domain states are achieved by inducing asymmetric interlayer interactions and decoupling the magnetic reversal behavior of individual ferromagnetic (FM) layers in exchange-biased FM multilayers with PMA. Hepta-level magnetic domain states are formed in [Co/Pt] FM multilayers grown on an antiferromagnetic FeO layer within a relatively low magnetic field range of ∼±400 Oe.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!