Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the k-space fluctuations of the wave action about its mean spectrum in the turbulence of dispersive waves. We use a minimal model based on the random phase approximation (RPA) and derive evolution equations for the arbitrary-order one-point moments of the wave intensity in the wave-number space. The first equation in this series is the familiar kinetic equation for the mean wave-action spectrum, whereas the second and higher equations describe the fluctuations about this mean spectrum. The fluctuations exhibit a nontrivial dynamics if some long coordinate-space correlations are present in the system, as it is the case in typical numerical and laboratory experiments. Without such long-range correlations, the fluctuations are trivially fixed at their Gaussian values and cannot evolve even if the wave field itself is non-Gaussian in the coordinate space. Unlike the previous approaches based on smooth initial k-space cumulants, the RPA model works even for extreme cases where the k-space fluctuations are absent or very large and intermittent. We show that any initial non-Gaussianity at small amplitudes propagates without change toward the high amplitudes at each fixed wave number. At each fixed amplitude, however, the probability distribution function becomes Gaussian at large time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.69.066608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!