Continuous control of chaos based on the stability criterion.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Mechanics, Shanghai Jiao Tong University, 200240 Shanghai, China.

Published: June 2004

A method of chaos control based on stability criterion is proposed in the present paper. This method can stabilize chaotic systems onto a desired periodic orbit by a small time-continuous perturbation nonlinear feedback. This method does not require linearization of the system around the stabilized orbit and only an approximate location of the desired periodic orbit is required which can be automatically detected in the control process. The control can be started at any moment by choosing appropriate perturbation restriction condition. It seems that more flexibility and convenience are the main advantages of this method. The discussions on control of attitude motion of a spacecraft, Rössler system, and two coupled Duffing oscillators are given as numerical examples.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.066203DOI Listing

Publication Analysis

Top Keywords

based stability
8
stability criterion
8
desired periodic
8
periodic orbit
8
continuous control
4
control chaos
4
chaos based
4
method
4
criterion method
4
method chaos
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Purpose: While treatment modalities for Maisonneuve fractures involving the proximal third of the fibula are established, no studies to date have reported outcomes associated with syndesmotic-only fixation of middle third fibular shaft fractures. The purpose of this study was to evaluate outcomes associated with syndesmotic-only fixation in the treatment of Maisonneuve fractures involving the middle third of the fibula.

Methods: A retrospective review was conducted on 257 cases of syndesmotic ankle instability with associated fibular fractures at a level 1 trauma center between 2013 and 2023.

View Article and Find Full Text PDF

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!