A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absorbing state phase transitions with quenched disorder. | LitMetric

Absorbing state phase transitions with quenched disorder.

Phys Rev E Stat Nonlin Soft Matter Phys

Department WNI, Limburgs Universitair Centrum, 3590 Diepenbeek, Belgium.

Published: June 2004

Quenched disorder--in the sense of the Harris criterion--is generally a relevant perturbation at an absorbing state phase transition point. Here using a strong disorder renormalization group framework and effective numerical methods we study the properties of random fixed points for systems in the directed percolation universality class. For strong enough disorder the critical behavior is found to be controlled by a strong disorder fixed point, which is isomorph with the fixed point of random quantum Ising systems. In this fixed point dynamical correlations are logarithmically slow and the static critical exponents are conjecturedly exact for one-dimensional systems. The renormalization group scenario is confronted with numerical results on the random contact process in one and two dimensions and satisfactory agreement is found. For weaker disorder the numerical results indicate static critical exponents which vary with the strength of disorder, whereas the dynamical correlations are compatible with two possible scenarios. Either they follow a power-law decay with a varying dynamical exponent, like in random quantum systems, or the dynamical correlations are logarithmically slow even for a weak disorder. For models in the parity conserving universality class there is no strong disorder fixed point according to our renormalization group analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.066140DOI Listing

Publication Analysis

Top Keywords

strong disorder
16
fixed point
16
renormalization group
12
dynamical correlations
12
absorbing state
8
state phase
8
disorder
8
universality class
8
class strong
8
disorder fixed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!