Substantial variations in the particle flux are commonly observed in field measurements on gravel-bed rivers and in laboratory experiments mimicking river behavior on a smaller scale. These fluctuations can be explained by the natural variability of sediment supply and hydraulic conditions. We conducted laboratory experiments of particle transport down a two-dimensional inclined channel, for which the boundary conditions were properly controlled. Most flow variables and the features of particle trajectories were measured using a high-speed camera. The particles were 6-mm glass beads entrained by a rapid, turbulent, supercritical water flow. Even under these well-controlled experimental conditions and despite steady supply, solid discharge exhibited significant variations with time. The objective of this paper was to pinpoint the origins of these fluctuations by investigating different flow conditions. Two experiments were done with a fixed (smooth or corrugated) channel bottom and two others were run with a mobile bed (involving layers of closely packed particles lying along the channel base, which could be entrained by the stream); in the latter case, two particle arrangements were tested. It was found that, to a large extent, fluctuations reflected the finite size of the observation window. For fixed beds, the characteristic time scale of fluctuations and their probability distribution can be predetermined by evaluating the mean and fluctuating velocities of a single particle. Solid-discharge fluctuations were exacerbated when the bed was mobile because (i) the moving solid phase and the stationary bed exchanged particles and (ii) collective entrainment of particles occurred.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.69.061307DOI Listing

Publication Analysis

Top Keywords

solid discharge
8
laboratory experiments
8
scale fluctuations
8
fluctuations
6
particle
6
fluctuations solid
4
discharge gravity-driven
4
gravity-driven particle
4
particle flows
4
flows turbulent
4

Similar Publications

In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Minimizing Zn Loss Through Dual Regulation for Reversible Zinc Anode Beyond 90% Utilization Ratio.

Small

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.

Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.

View Article and Find Full Text PDF

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

Aquaculture systems generate large amounts of sludge that represent serious environmental threats if discharged directly into local ecosystems. However, this nutrient-rich sediment can contribute to nutrient cycling by being applied as an organic fertilizer to ornamental medicinal trees during their early growth stages. To investigate the potential advantages of using recirculating aquaculture system sludge (RASS) and biofloc technology sludge (BFTS) as organic fertilization alternatives to chemical fertilization, a pot trial was conducted at the Faculty of Agriculture, Cairo University, Egypt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!