Chemical modification of silk sericin in lithium chloride/dimethyl sulfoxide solvent with 4-cyanophenyl isocyanate.

Biomacromolecules

New Silk Materials Laboratory, Insect Biotechnology and Sericology Department, National Institute of Agrobiological Sciences, 1-4-8 Gohda, Okaya, Nagano 394-0021, Japan.

Published: February 2005

This paper reports chemical modification of silk sericin in LiCl/dimethyl sulfoxide (DMSO) solvent with 4-cyanophenyl isocyanate. Sericin is a highly hydrophilic protein secreted by Bombyx mori, serving as a protein glue in a cocoon. LiCl/DMSO was found to be a good solvent of sericin and useful for homogeneous modification of its abundant hydroxyl groups under nonaqueous condition. Fourier transform infrared (FTIR) analysis of the modified sericins revealed that 4-cyanophenyl groups were incorporated into sericin molecules mainly through urethane linkages. Several characteristics of the modified sericins such as solubility characteristic, hygroscopic property, and thermal stability were investigated. Secondary structure analysis using FTIR spectra suggested that formation of strong intermolecular hydrogen bonds was inhibited by the modification that is probably attributable to the incorporation of bulky 4-cyanophenyl groups. These results demonstrate that chemical modification of sericin using LiCl/DMSO solvent markedly alters its characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm034537rDOI Listing

Publication Analysis

Top Keywords

chemical modification
12
modification silk
8
silk sericin
8
solvent 4-cyanophenyl
8
4-cyanophenyl isocyanate
8
modified sericins
8
4-cyanophenyl groups
8
sericin
6
sericin lithium
4
lithium chloride/dimethyl
4

Similar Publications

Matchbox Janus membrane fog collector with highly efficient directional transport.

Nanoscale Horiz

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH) needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses.

View Article and Find Full Text PDF

A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification.

View Article and Find Full Text PDF

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

Using CO as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO). The modification of the Schiff base not only provides an alkaline environment for CO absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H cleavage.

View Article and Find Full Text PDF

Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!