Poly(N-isopropyl acrylamide) is a thermoresponsive polymer that has been widely investigated for drug delivery. Herein, we report conditions facilitating the controlled, room-temperature RAFT polymerization of N-isopropylacrylamide (NIPAM). The key to success is the appropriate choice of both a suitable RAFT chain transfer agent (CTA) and initiating species. We show that the use of 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid, a trithiocarbonate RAFT CTA, in conjunction with the room-temperature azo initiator 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), in DMF, at 25 degrees C, yields conditions leading to NIPAM homopolymerizations which bear all of the characteristics of a controlled/"living" polymerization. We also demonstrate facile size exclusion chromatographic analysis of PNIPAM samples in DMF at 60 degrees C, directly on aliquots withdrawn during the polymerizations, which avoids the problems previously reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm049825hDOI Listing

Publication Analysis

Top Keywords

controlled room-temperature
8
room-temperature raft
8
raft polymerization
8
polymerization n-isopropylacrylamide
8
dmf degrees
8
facile controlled
4
raft
4
n-isopropylacrylamide polyn-isopropyl
4
polyn-isopropyl acrylamide
4
acrylamide thermoresponsive
4

Similar Publications

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis.

Anal Methods

January 2025

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.

Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility.

View Article and Find Full Text PDF

Effects of Seed Colour and Regulated Temperature on the Germination of Chiov.: An Endemic Gum- and Resin-Bearing Species.

Plants (Basel)

December 2024

Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

(1) Background: According to the IUCN, is classified as a vulnerable species. However, knowledge of its seed characteristics and germination behaviour is lacking. (2) Methods: The aim of this research was to characterise the seeds and evaluate the effects of seed colour and controlled temperatures on seed germination.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!