To determine the extent of a natural variability of the spectra of the autofluorescence and its significance for a reproducibility of different approaches typically used in studies on fluorescence detection of colonic lesions. Two independent series of experiments have been conducted during three years in the same laboratory. Macroscopic tissue specimens obtained during operations of patients with colonic cancers were studied in vitro. The tissues were excited using UV lines of c.w. He-Cd laser and pulsed nitrogen laser and the autofluorescence spectra were recorded for areas visually diagnosed as normal or pathologically changed mucosa. Natural variability of the autofluorescence spectra of colonic tissues seems to be most important factor limiting sensitivity and specificity of the diagnostic algorithms. The mean fluorescence spectra obtained for normal mucosa and its neoplastic lesions differ significantly but the differences are difficult to observe because of the high natural variability among the individual spectra. Further studies of biological basis of the colonic autofluorescence are necessary for a progress in the field of fluorescence detection of colonic neoplastic lesions.
Download full-text PDF |
Source |
---|
Chemistry
January 2025
IIT Kharagpur: Indian Institute of Technology Kharagpur, Dept of Chemistry, IIT Kharagpur, 721302, Kharagpur, INDIA.
Although metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have been extensively used as fluorescent-based antibiotic sensors, newly developed hydrogen-bonded organic frameworks (HOFs) are largely unexplored toward this direction. To realize this, the luminescent HOFs must be stable in water as the analytes are mostly found in water-based effluents in environments. In addition, HOFs should be equipped with specific recognition sites in order to direct the discrimination among the antibiotics.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
Functional polymeric nanoparticles, especially those with anisotropic structures, have shown significant potential and advantages in biomedical applications including detecting, bioimaging, antimicrobial and anticancer. Herein, tetraphenylethylene (TPE) and azobenzene modified polypeptides of poly((-glutamic acid) tetraphenylethylene-stat-(-glutamic acid)) (P(GATPE-stat-GA)) and poly((-glutamic acid) azobenzene-stat-(-glutamic acid)) (P(GAAzo-stat-GA) are synthesized, which self-assemble into bowl-shaped nanoparticles (BNPs) with controlled diameter, opening size and fluorescent property individually, or by co-assembly. Due to the quenching effect of azobenzene, the fluorescence of the coassembled BNPs is completely inhibited.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
"Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania.
Metal ions, which are naturally occurring in food, soil, and water, are present in every part of the environment. Therefore, it is imperative to identify those using accessible and economical methods. In this study, a novel two-step chemical modification process for pullulan, a natural polymer, is presented.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, China.
Revealing changes in the tumor microenvironment is crucial for understanding cancer and developing sensitive methods for precise cancer imaging and diagnosis. Intracellular hydrogen peroxide (HO) and microenvironmental factors (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!