Left-right biophoton asymmetry from the palm and the dorsum of hands from 7 Korean hemiparesis patients were studied. There is a strong tendency that the left-hemiparesis patients emit more biophotons from the right than the left hands, while the right-hemiparesis patient emits more from the left hand. Acupuncture treatment reduces dramatically the left-right asymmetry of biophoton emission rates. However there is no systematic difference for the patients in the emission rates from the palm and the dorsum of hands.

Download full-text PDF

Source

Publication Analysis

Top Keywords

left-right asymmetry
8
asymmetry biophoton
8
biophoton emission
8
hemiparesis patients
8
palm dorsum
8
dorsum hands
8
emission rates
8
emission hemiparesis
4
patients
4
patients left-right
4

Similar Publications

Function of nodal cilia in left-right determination: Mechanical regulation in initiation of symmetry breaking.

Biophys Physicobiol

September 2024

Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.

View Article and Find Full Text PDF

Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain.

Neuroimage

January 2025

Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. Electronic address:

Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes anteriorly past the left.

View Article and Find Full Text PDF

Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.

Dev Growth Differ

January 2025

Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis (AIS) is characterized by an asymmetrical formation of the spine and ribcage. Recent work provides evidence of asymmetrical (right versus left side) paraspinal muscle size, composition, and activation amplitude in adolescents with AIS. Each of these factors influences muscle force generation.

View Article and Find Full Text PDF

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!