Effective strategies are needed to manage insect resistance to Bacillus thuringiensis (Bt) proteins expressed in transgenic crops. To evaluate a multiple resistance gene pyramiding strategy, eight soybean (Glycine max) lines possessing factorial combinations of two quantitative trait loci (QTLs) from plant introduction (PI) 229358 and a synthetic Bt cry1Ac gene were developed using marker-assisted selection with simple sequence repeat markers. Field studies were conducted in 2000 and 2001 to evaluate resistance to corn earworm (Helicoverpa zea) and soybean looper (Pseudoplusia includens), and detached leaf bioassays were used to test antibiosis resistance to Bt-resistant and Bt-susceptible strains of tobacco budworm (TBW; Heliothis virescens). Based on defoliation in the field and larval weight gain on detached leaves, lines carrying a combination of cry1Ac and the PI 229358 allele at a QTL on linkage group M were significantly more resistant to the lepidopteran pests, including the Bt-resistant TBW strain, than were the other lines. This is the first report of a complementary additive effect between a Bt transgene and a plant insect resistance QTL with an uncharacterized mode of action that was introgressed using marker-assisted selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-004-1714-9 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFMycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFCrit Rev Microbiol
January 2025
Oral Microbiology, Bristol Dental School, University of Bristol, United Kingdom.
This review discusses the chemical properties, synthesis and detection, and biological functions of a molecular group of cis-2-unsaturated fatty acids, containing fatty acid carbon chains of various lengths and cis double-bond configurations, known as the diffusible signaling factor family (DSFF). Early postulation of the conserved nature of the DSFF among Gram-negative bacteria have now been challenged by the latest evidences that unraveled their presence in a various other distinct microorganisms. Over the last decade, a significant depth and breadth of understanding has been made on the multifaceted functions of DSFFs among bacteria, and their interactions with evolutionarily divergent fungi, plants insects and small animals.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage.
View Article and Find Full Text PDFOne Health
June 2025
Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!