Objective: Mitogen-activated protein kinase phosphatase-1 (MKP-1) is one of several oxidized-l-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC)-induced genes identified in human aortic endothelial cells (HAEC). We previously reported that MKP-1 activity is required for Ox-PAPC-mediated endothelial/monocyte interactions; however, an in vivo role of MKP-1 in atherogenesis has not been investigated.
Methods And Results: We now report that MKP-1 protein is expressed in the atherosclerotic lesions of mice. MKP-1 mRNA expression is highly induced in C57BL6/J mice on an atherogenic diet, low-density lipoprotein receptor (LDLR) (-/-) mice on a Western diet, and 10-week or older ApoE (-/-) mice on a chow diet. In ApoE (-/-) mice treated with 1 mg/mL of sodium orthovanadate (NaOV), a specific inhibitor of tyrosine phosphatases including MKP-1, total phosphatase activity and MKP-1 protein were decreased in both the aortic lesions and liver lysates. In 3 animal models of atherosclerosis [C57BL6/J mice on an atherogenic diet for 15 weeks, LDLR (-/-) mice on a Western diet for 10 weeks, and ApoE (-/-) mice on a chow diet for 8 weeks], mice treated with NaOV had significantly smaller atherosclerotic lesions when compared with the control group.
Conclusions: MKP-1 expression is associated with hypercholesterolemia and atherosclerosis, and inhibition of MKP-1 activity may prevent atherosclerotic lesion development in mice. MKP-1 is required for Ox-PAPC-mediated endothelial/monocyte interactions; however, an in vivo role of MKP-1 in atherogenesis has not been investigated. We now report that MKP-1 protein is expressed in the atherosclerotic lesions of mice and inhibition of tyrosine phosphatase activity and MKP-1 protein reduce atherosclerotic lesions in mouse models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000138342.94314.64 | DOI Listing |
Nat Cardiovasc Res
January 2025
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
Atherosclerosis is a progressive arterial disease arising from imbalanced lipid metabolism and a maladaptive immune response. The lymphatic system ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells to draining lymph nodes, thereby potentially affecting atherogenesis. Endothelial cell-specific deletion of Pannexin1 (Panx1) in apolipoprotein E-deficient (Apoe-/-) mice increased atherosclerosis, suggesting a protective role for Panx1 channels in arterial endothelial function.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
Background: Atherosclerosis is a chronic disease caused by the accumulation of lipids, inflammatory cells, and fibrous elements in arterial walls, leading to plaque formation and cardiovascular conditions like coronary artery disease, stroke, and peripheral arterial disease. Factors like hyperlipidemia, hypertension, smoking, and diabetes contribute to its development. Diagnosis relies on imaging and biomarkers, while management includes lifestyle modifications, pharmacotherapy, and surgical interventions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!