Incubation of serum from rabbits with a turpentine-induced inflammatory reaction and from humans with an upper respiratory viral infection with hepatocytes from rabbits with a turpentine-induced inflammatory reaction for 4h reduces total cytochrome P450 content and activity of cytochrome P450 isoforms CYP1A1/1A2 and 3A6 without affecting the expression of these proteins. To document the signal transduction pathways implicated in the decrease in CYP1A1/1A2 and 3A6 activity, hepatocytes from rabbits with a turpentine-induced inflammatory reaction were incubated with serum from rabbits with a turpentine-induced inflammatory reaction, serum from individuals with a viral infection and interleukin-6 for 4h in presence of inhibitors of protein kinases. The sera-induced decrease in CYP1A1/1A2 and 3A6 activity was partially prevented by the inhibition of Janus-associated protein tyrosine kinase, double-stranded RNA-dependent protein kinase, protein kinase C, and p42/44 mitogen-activated protein kinase. The serum from rabbits with a turpentine-induced inflammatory reaction increased the phosphorylation of Erk1/2, effect prevented by PD98059 but not by bis-indolylmaleimide, a specific inhibitor of protein kinase C. The results demonstrated that the decrease in total cytochrome P450 content and in CYP1A1/1A2 and 3A6 activity by sera and interleukin-6 involves the activation of protein tyrosine kinases, p42/44 mitogen-activated protein kinase and protein kinase C. Indirect evidence supported that nitric oxide is implicated in the decrease in activity of these enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2004.04.002DOI Listing

Publication Analysis

Top Keywords

inflammatory reaction
24
protein kinase
24
rabbits turpentine-induced
20
turpentine-induced inflammatory
20
3a6 activity
16
serum rabbits
16
cyp1a1/1a2 3a6
16
implicated decrease
12
cytochrome p450
12
protein
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!