Polysialic acid (polySia) is a unique and highly regulated posttranslational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration and plastic processes including learning and memory. Polysialylated NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. However, the impact of each enzyme in NCAM polysialylation is not understood. Here, we describe the selective cell-based in vitro inhibition of ST8SiaII using synthetic sialic acid precursors. We provide evidence for different substrate affinities of ST8SiaII and ST8SiaIV. These data open the possibility to study the individual role of the two enzymes during various aspects of brain development and function and in tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2004.04.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!