Hepatitis B virus X-associated protein (HBXAP) is a plant homeodomain (PHD) finger-containing protein implicated in transcription regulation. However, the underlying molecular mechanism remains to be defined. Here, we show that HBXAP represses NF-kappaB-mediated gene activation in a dose-dependent manner. Our results showed that HBXAP and NF-kappaB colocalize to the nuclear matrix with specific physical interaction between them. HBXAP may depend on its nuclear matrix localization for its repression of NF-kappaB-mediated gene repression. A specific nuclear matrix targeting sequence of HBXAP was identified. The sequence is included in a region encompassing amino acids 688-722 that could form a coiled-coil structure. The 18-amino acid stretch lies at the core of that structure. The present results showed that either the coiled-coil conformation or the PHD finger domain is crucial for the transcription repression activity of HBXAP on NF-kappaB-mediated gene activation. Taken together, our results suggest that HBXAP may function as a negative regulator for TNF-alpha-induced, NF-kappaB-mediated gene activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2004.04.019DOI Listing

Publication Analysis

Top Keywords

nf-kappab-mediated gene
16
gene activation
12
nuclear matrix
12
hbxap
8
hbxap nf-kappab
8
functional interaction
4
nuclear
4
interaction nuclear
4
nuclear matrix-associated
4
matrix-associated hbxap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!