Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crystallogenesis, usually based on the vapor diffusion method, is currently considered one of the most difficult steps in macromolecular X-ray crystallography. Due to the increasing number of crystallization assays performed by protein crystallographers, several automated analysis methods are under development. Most of these methods are based on microscope images and shape recognition. We propose an alternative method of identifying protein crystals: by directly exposing the crystallization drops to an X-ray beam. The resulting diffraction provides far more information than classical microscope images. Not only is the presence of diffracting crystals revealed, but also a first estimation of the space group, cell parameters, and mosaicity is obtained. In certain cases, it is also possible to collect enough data to verify the presence of a specific substrate or a heavy atom. All these steps are performed without the sometimes tedious necessity of removing crystals from their crystallization drop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2004.04.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!