Performance of magnesium ammonium phosphate precipitation and its effect on biological treatability of leather tanning industry wastewaters.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Maslak, Istanbul, Turkey.

Published: September 2004

Leather tanning industry is one of the several industries discharging significant amount of nitrogen. Magnesium ammonium phosphate (MAP) precipitation is a promising pretreatment for leather tanning industry wastewaters for the control of toxic parameters; excess suspended solids as well as nitrogen which increase the cost and complexity of following biological treatment. Application of MAP precipitation, however, modifies the characteristics and biological treatability of wastewaters. In this study, characteristics and biological treatability of MAP precipitation effluent were experimentally investigated using the wastewaters obtained from a bovine leather processing plant. An experimental study involving the determination of COD fractions and kinetic parameters of biological treatment was conducted for both gravity settling and MAP precipitation. Results of the study indicated that MAP precipitation, in addition to high degree of nitrogen removal, yielded a soluble, readily biodegradable effluent which was also free from toxics. MAP precipitation provided an effluent COD of almost half of that of gravity settling. Reduced value of soluble residual microbial products (Sp) obtained with MAP precipitation effluent was an additional benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1081/ese-120037886DOI Listing

Publication Analysis

Top Keywords

map precipitation
28
biological treatability
12
leather tanning
12
tanning industry
12
magnesium ammonium
8
ammonium phosphate
8
precipitation
8
industry wastewaters
8
biological treatment
8
characteristics biological
8

Similar Publications

Soil moisture determines effects of climates and soil properties on nitrogen cycling: Examination of arid and humid soils.

J Environ Manage

December 2024

State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, 710061, China. Electronic address:

While soil moisture has a significant effect on nitrogen (N) cycling, how it influences the dependence of this important biological process on environmental factors is unknown. Specifically, it is unclear how the relationships of net N mineralization (N) and soil moisture vary with soil properties and climates. In turn, how the relationships of N vs.

View Article and Find Full Text PDF

To explore the direct and indirect effects of organic fertilizer application on greenhouse gas emissions from agricultural soils, a total of 1228 groups of data from 129 published studies were selected. Meta-analysis was used to analyze the effects of organic fertilizer on global greenhouse gas emissions from agricultural soils and their influencing factors. Meanwhile, a structural equation model (SEM) was further constructed to quantify and determine the causal relationships between the factors.

View Article and Find Full Text PDF

Changes in temperature and precipitation are already influencing US forests and that will continue in the future even as we mitigate climate change. Using spatiotemporally matched data for mean annual temperature (MAT) and mean annual precipitation (MAP), we used simulated annealing to estimate critical thresholds for changes in the growth and survival of roughly 150 tree species (153 spp. for growth, 159 spp.

View Article and Find Full Text PDF

Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands.

J Environ Manage

December 2024

Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China. Electronic address:

Microorganisms play dual roles in soil organic carbon (SOC) decomposition and accumulation. Despite advancing insights into their involvement in the carbon cycle, understanding the impact of microbial community structure and physiological traits on SOC stabilization in arid and semi-arid grasslands remains elusive. Here, we analyzed arid and semi-arid grasslands SOC stability by comparing the ratio of mineral-associated organic carbon (MAOC) to particulate organic carbon (POC) across a grassland transect in north-south Ningxia, encompassing various grassland types and a broad climatic gradient (ΔMAP = 450 mm).

View Article and Find Full Text PDF
Article Synopsis
  • The anammox process is an efficient method for removing nitrogen from wastewater, but its application is limited due to slow bacteria growth and sludge flotation.
  • This study explored two methods—Mg adsorption and magnesium ammonium phosphate (MAP) precipitation—to enhance anammox bacteria granulation, with Mg boosting specific anammox activity significantly more than MAP.
  • While both methods showed similar nitrogen removal efficiency, MAP helped reduce sludge flotation, making it an effective option for practical applications despite some drawbacks in bacteria performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!