The combination of sequencing and post-sequencing experimental approaches produces huge collections of data that are highly heterogeneous both in structure and in semantics. We propose a new strategy for the integration of such data. This strategy uses structured sets of sequences as a unified representation of biological information and defines a probabilistic measure of similarity between the sets. Sets can be composed of sequences that are known to have a biological relationship (e.g. proteins involved in a complex or a pathway) or that share similar values for a particular attribute (e.g. expression profile). We have developed a software, BlastSets, which implements this strategy. It exploits a database where the sets derived from diverse biological information can be deposited using a standard XML format. For a given query set, BlastSets returns target sets found in the database whose similarity to the query is statistically significant. The tool allowed us to automatically identify verified relationships between correlated expression profiles and biological pathways using publicly available data for Saccharomyces cerevisiae. It was also used to retrieve the members of a complex (ribosome) based on the mining of expression profiles. These first results validate the relevance of the strategy and demonstrate the promising potential of BlastSets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC484170 | PMC |
http://dx.doi.org/10.1093/nar/gkh681 | DOI Listing |
Anat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.
Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.
J Neurol
January 2025
Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.
Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.
Acta Diabetol
January 2025
Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Objective: The objective is to investigate the differences in urinary organic acid (OA) profiles and metabolism between healthy control (HC) pregnant women and those with gestational diabetes mellitus (GDM) during the second trimester and third trimester of pregnancy.
Methods: A total of 66 HC pregnant women and 32 pregnant women with GDM were assessed for 107 hydrophilic metabolites in urine samples collected during the second and third trimester of pregnancy using tandem mass spectrometry. The urine OA profiles for each group were obtained, and metabolomic analysis and discussion were conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!